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Abstract

We devise a class of fast wavelet based algorithms for linear evolution equations whose
coefficients are time independent. The method draws on the work of Beylkin, Coifman, and
Rokhlin 1] which they applied to general Calderon-Zygmund type integral operators. We
apply a modification of their idea to linear hyperbolic and parabolic equations, with spatially
varying coefficients. A significant speedup over standard methods is obtained when applied

to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
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1. Introduction

During the last few years a number of fast computational algorithms have been developed
for elliptic problems. These are techniques for which the number of arithmetic operations
needed are close to linear as a function of the number of unknowns. Examples of algorithms
of such complexity are multigrid methods and the so-called fast Poisson solvers. The fast
multipole method and wavelet based methods for elliptic problems formulated as integral
equations also belong to this category [8], [1].

There has not been the same progress for hyperbolic and parabolic methods. In general
classical numerical techniques for these problems are already optimal.

Consider a system of evolution equations.

Owu+ L(z,0;)u= f(z), z€QC R?, t>0,

(1.1)
u(z,0) = uo(z),

with boundary conditions, where L is a differential operator.

An explicit discretization of this problem typically takes the form,

u? & u(zj,tn), t, = nAt,

Ir; = (lezl, fes ,jdA:I:d)

(1.2) u™ = Aum + F,

uo = Up,

u, F e RV, At = const. |Az|".

The vector " contains all the unknowns u? at time level t,,. For simplicity we shall assume
Jb»=1,2,...,N in all dimensions v =1,...,d.

The matrix A is (N¢ x N?) with the number of elements # 0 in each row and each
column bounded by a constant. Every time step requires O(N?) arithmetic operations and
the overall complexity for a time interval of O(1) is of the same order as the number of
unknowns, O(N7). .

There are, however, some fast methods based on the analytic form of the solution opera-
tor. In [3] the multidimensional heat operator, with ug and f both zero, but with inhomoge-
neous boundary data given at M points, was treated. There the closed form of the solution
evaluated at M points at time level N was obtained in O(NM) rather than O(N?M?) op-
erations. Also, in [4], the same authors obtained an algorithm for evaluating the sum of
N Gaussians at M arbitrarily distributed points in O(N + M) operations. So far, their
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interesting method appears to need an explicit analytic representation of the heat kernel,
effectively ruling out variable coefficient problems.

The formula (1.2) has a simple closed form solution

(1.3) u" = A"uo—i-nz:lA“F.

v=0
This form can be used to compute the solution A™ug, for ' = 0, in logn steps, (n = 2™, m in-
teger; here and throughout, logn = log, n) by repeated squaring of A : A, A%, A%, A8,... AT",

Unfortunately the later squarings involve almost dense matrices and the overall complex-
ity is O(N3?log N) which is larger than that using (1.2) directly.

For an appropriate representation of A in a wavelet basis all of the powers A may be
approximated by sparse matrices and the algorithm using repeated squaring should then be
advantageous.

We shall consider the following algorithms for the computation of the closed form solution

(1.3) of the inhomogeneous problem in m = logn steps,

B:=5A45"!
C:=1
(1.4) C := TRUNC(C + BC,¢)

B := TRUNC(BB,¢) } (iterate m steps)

u™ ;= S (BSu® + CSF).
The matrix S corresponds to a fast transform of wavelet type and the truncation operator
sets elements in a matrix to zero if their absolute value is below a given threshold.

ai; = ai; ai;| > ¢
fi,'j =0 Ia,-,-] < E.

(1.5) A=TRUNC(Ae) : {

It is easy to see that algorithm (1.4) is equivalent to (1.3) for ¢ = 0. This is not so for e > 0
and also for F' #Z 0. We shall however show that it is possible to choose ¢ small enough for
the result of (1.4) to be arbitrarily close to (1.3) but still with very few arithmetic operations.

For a fixed predetermined accuracy level the computational complexity to calculate a one
dimensional hyperbolic equation can be reduced from the standard O(N?) to O(N(log N)?).
The extra cost per time step is minimal. This also makes it possible, as a curiosity, to use
algoriAthrr'xs: ﬂﬁéh are unstable in the traditional sense.

Our technique is even more favorable for parabolic problems. A d-dimensional explicit
calculation with standard complexity O(N%t?) may be reduced to O(N%(log N)3).



The algorithm (1.4) can be extended to some problems with time dependent data. In this
case, we clearly need to compress the information in the data such that not all the O(N?*T)
values in, e.g. the inhomogeneous term f(z;,%,) are needed.

One simple but important application of this type is from optics or electro-magnetic
scattering with a time periodic source. If k¥ points are needed to resolve one time period, we

can group k time steps together

: k-1
(1.6a) utF = Ayt + 3 A Fagreior
=0
where
(1.6b) F, = Atf(ty).

This equation is now of the type (1.2) with time step kAt and with inhomogeneous term
k-1
(16C) F= Z AJFn+k+j_1.

§=0

In sections 2 and 3 we shall discuss the analytical properties of the algorithm. Numerical

examples are presented in section 4.

2. Hyperbolic Problems

Consider first the simple one dimensional scalar advection equation,

Ou +af,u=0, a>0
(2.1)
u(z,0) = uo(z), 0<z <1

The functions ug and thus u are assumed to be 1-periodic in z. The solution of (2.1) is given
by:
(2.2) u(z,t) = uo(z — at).

The different rows of A” in a numerical solution of (2.10) will represent approximations of

the Green’s function G below,

u(z,t) = [ Gla,y,Oualu)dy,
(2.3)

u(z,t) = /_o:o §(z — y — at)uo(y)dy.



Let ¢, be a truncated wavelet expansion of a §-function with an orthonormal set of compactly

supported wavelets,

§(z) ~ py(z) = Y appin(z)

pinl(z) =272z — k +1)
"The choices of ¢(z) will be discussed below. Assume that the rows of A” are discrete é-
functions, i.e. just one element is nonzero and large. For each level j = 1,2,...,J there are
only a finite number of ;i # 0. With J = m = log N there is only log N of all aj; # 0.
Thus each row in B, (1.4), has log N elements, b;x # 0. The matrix B? is also a transform
of an idealized matrix A” and will have N log N elements different from zero. This means
that each iteration step in the algorithm (1.4) produces O(N(log N)?) flops when F' = 0.
We have assumed that calculations are only carried out for those B? elements which are
different from zero. In practice a slightly larger number of elements needs to be computed
and then truncated. This corresponds to the case when the location of the é-functions is
only approximately known. Compare the wavelet technique for Burgers’ equation by Maday,
Perrier, and Ravel [6].
Each row of C, (1.4), is a transform of a step function,

&z) = const. 0 <z < at,
10, else

This function can also be represented by log N wavelets and thus the overall cost is
O(N(log N)3).
In numerical computations the rows of A” are only approximations of §-functions. If an

upwind scheme,

ytt!

; u} — /\(u;1 — u;-‘_l),

(2.4) uW = we(z;), j=12,...N,

J

A = adAt/Az <],

is used A will have the form,

1-X 0 AT

A 1-X 0 .- 0

aA_] 0 A 1-X 0 0
0 0 A 1- )]

The matrix A¥ will have Toeplitz structure. Each row is still an approximation of a §-

function. The first order smoothing effect of (2.4) is given by the modified equation, [5],
(2.5) Ou + aldyu = (an/?)Biu.
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Equation (2.5) is parabolic with a fundamental solution of the form,
(2.6) G(z — y,t) = (2raAzt)”7 exp(—(z — y — at)?/(2aAzt)).

Compare the solution formula for parabolic problems (3.2).

Each row of A" is thus a close approximation to the function G(x — y,t) above. The
computational complexity of the algorithm (1.4) depends on how many wavelets are needed
to represent G(z — y,t) as a function of z,(0 < t < T) with a given accuracy.

Higher order accurate (say order 2p-1) dissipative finite difference approximations to (2.1)

are usually modelled by the equation
(2.7) ug + augy = (=1 1k, (Az)*P! (%> u.

with k, > 6 > 0,4, independent of Az.
The fundamental solution for this parabolic equatlon is:

Gy(a,t) = % [ deexplie(z ~ at) - ky(B2)7 ).

The key estimate we shall obtain here (and which we certainly do not claim is new) is:

(2.8) ™t (E)m Gp(z + at,t)

<
Oz S Cmsp

uniformly in 0 < f and Az and for all nonnegative integers m.

Proof of 2.8. We wish to bound

1

m —00

— %‘/_oo eiEa: (566_) ™ [gme—kp(Az)h—l&'zpt] dé

N O

The result is now clear. Also, an inspection of the right hand side of the above shows that

Crm,p can be chosen to be arbitrarily small if ¢{(Az)?*~! is large enough.

Remark R1. Let the general space dependent coefficient, one dimensional system of hy-

perbolic equations

u + A(z)u, = Cz)u,
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where u is an £ vector, A is a uniformly diagonalizable smooth £ x £ matrix, with all real
eigenvalues \;(z), and C(z) is smooth, be approximated by a dissipative finite difference
scheme of order 2p — 1. Typically, its model equation is a systems version of (2.1)

us + A(z)uy = C(z)u + (-1)P*(Az)?*-1P (:c, %) u

where (—1)?*1 P(z, ) is a 2p order elliptic operator. A more involved argument shows that
the fundamental solution satisfies an estimate of the type (2.8) with the expression = + at
replaced appropriately by solutions of %“;1 = M(&) £(0) ==z, i=1,...,f and with Gy,
possibly growing in time like Cy, ,e** for k fixed.

Our numerical procedure involves the compression of the matrix A”, which for the purpose
of analysis only, we shall view as the discretization of the fundamental solution for either

(2.5) or (2.7),
(A" = G(zj, Yk, t7)

where the interval [0,1] is discretized via
z; = -JN j=1,...,N, N=2,
[0,1] x [0,1] is discretized via (zj,yx), and t* = nAt = nAAz, n=0,1,....
We now adapt the terminology, notation, and results of [1] to this unsteady problem
(1.1).
Finite difference schemes approximating (1.1), e.g. (2.4) are regarded as acting on a

vector {s9}X¥_, which is to be viewed as approximating u(z,0) on the finest scale:

sy = 2!2!/np(2”3: — k4 1u(z,0)dz

= [ 1G@)eul(z)ds.
All functions, both continuous and discrete, are extended periodically:

u(z,t) = u(z+ 1,1)

(] — 0
etc.

The function ¢ satisfies
2m-1

o(z) = ZO hp+10(22 — p)

The function ¥(z) which will generate an orthonormal basis is obtained via

2m-1

P(z) = Z Ip19(2z — p)

p=0



with g, = (=1)P hom—ps1, p=1,...,2m and [p(z)dz = 1.
The coefficients {h,}27, are generally chosen so that

Yik(z) = 275270 — k + 1),

for j, k integers, form an orthonormal basis and in addition, the function ¥(z) has m van-
ishing moments

/zb(m)a:tdw:O, £=0,1,...,m—1.

Also we define '
Pik = 2—%§0(2—j$ —k+ 1).

Finally, we assume that there exists a real constant 7,,(r; = 1) such that the following

conditions are satisfied:
/go(w—{-'rm):cldw =0 for £=1,...,m—1,

and [¢(z)dz = 1.

In this case the quadrature formula becomes:

=

and the initial discretization error is O(N~(™+1)) up to uniform translation.

)+ O(N~(m+))

The decomposition of the vector {s,...,s5.} into the basis we use to compute with

comes via {2} — {sl} —> {s?} ---—> {st}

NG N {djE N {dg)

This is implemented in O(N) operations using:

p=2m
Jj -1
8, = Z hP3p+2k—1
p=1
, p=2m 1
7 J—
dy = Z GpSptak-1
r=1

and the s}, d} are viewed as periodic sequences with period 277,

The orthonormal basis consists of
[d_},...,d%, df,...d%;i,...,di‘, 7]
The inverse mapping can also be done in O(N) operations.
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Each of the sf; is thought of as approximating
si = [ f@)em(z)da =
2T [F@H (k=1 + 7))
+O(N v m+1) )]
while each df; is thought of as approximating

di = / F(@)i(z)dz.

The numerical procedure effectively transforms the approximate discretization of the
matrix G(z;,yx,t") which is (A");x. Estimate (2.8) (corresponding to (4.5) and (4.6) of [1],
uniform in all parameters, indicates (via an argument of [1]) that truncating A® by removing
elements of a band of width b > 2m around a shifted diagonal (and its periodic extension)

i.e., those for which
|l —k—ain| > b> 2m,

which replaces A™ by A™®, leads to an estimate
4" — 4™ < - log(N)

for C' depending only on G.

It also follows easily that for large N and fixed precision €, only O(N log N) elements
will be greater than €. Alternatively, by discarding all elements that are smaller than a fixed
threshhold we compress it to O(N log N) elements. Again following the discussion in [1], we
note that this naive approach is to construct the full matrix in the wavelet basis and then
to threshhold. Clearly this is an O(N?) operation.

Since we have, ¢ priori, the structure of the singularities of the matrix A” the relevant
coefficients can be evaluated by using the quadrature formulas. Estimate (2.8) guarantees

that this procedure requires O(N log N) operations.

Remark R2. It is interesting to note that so called unstable difference schemes can be used

without any drastic loss of efficiency. If (2.1) is approximated by,

U?H =uj — )‘(U?«H - “?—1)/2’

(2.9)
w) =uo(z;), j=12,...,N

the algorithm is not stable for any fixed A > 0, see e.g. [7].
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The approximation does converge if At < CAz?, (A £ CAz) with an amplification
factor 1 + O(At). The number of timesteps for ¢ = O(1) calculation will be large, n =
O(Az™?) = O(N?). This is devastating for the standard explicit algorithm (1.2) but will
only affect the complexity of (1.4) by a constant factor. The number of iterations (m in
(1.4)) will increase from log(N) to log(N?).

Our approach is in general not as favorable for multidimensional hyperbolic systems,

d
B+ Aj(2)du,u= f(z), weERY,
(2.10) i=1

u(z,0) = ug(z).

When u is a scalar or if the system can be diagonalized the algorithm (1.4) works well. The
solution is given by integration along characteristics and the support of the Green’s function
is a small number of points (see Remark (R1) above). In the idealized case each row of
A consists of a fixed number of §-functions. Its wavelet representation will have log(N?)
nonzero terms. The overall complexity for (1.4) is then O((log N)*N¢) when the knowledge
of the location of the §-functions is used. This is better than the standard O(N?*!) estimate.

In general, however, the Green’s function for (2.6) has a support with positive volume
in R? and with a singular support of positive measure in Hausdorff dimension d — 1. The
representation of the singular support consists of O(N?"1)é-functions in each row of A.
This corresponds to O(log(N)N?-1) wavelets and the overall algorithm contains at least
(O(log N)*N?%¥-1) wavelets.

For general multidimensional problems the new algorithm is still of interest in special
cases, e.g., if the solution is needed only at a fixed number of points and if it is needed for a

large number of different data wu, f.

3. Parabolic Problems

The Green’s function for parabolic problems is smooth in contrast to the hyperbolic case.

The pure initial value problem for the heat equation,

Ouu=Au, t>0, z€ R,
(3.1)
U(.’I),O) = uo(m)a

has a solution of the form,

(3:2) u(z, 1) = (4xt)™ [ exp(=o - yI?/4t)uoly)dy.



In bounded domains the kernel has to be changed slightly depending on the boundary
conditions. For positive t(= nAt) each row in A™ is always an approximation of segments of
regular functions.

Our new technique is in general more favorable for parabolic problems than hyperbolic
ones. The structure of the matrix B in (1.4) is simpler. When ¢ increases the kernel becomes
‘smoother and aji can be truncated to zero for all k¥ when j is large enough.

Explicit methods for (3.1) also requires more operations than for hyperbolic problems

when the standard method is used. This follows from the parabolic stability requirement,
(3.3) At < const. |Az|?.

The new technique is only marginally affected by the constraint (3.3). Compare here the
discussion above for unstable hyperbolic methods.
In more general higher order multidimensional parabolic cases the fundamental solution
of, e.g.,
u + (—A)u =0
is

Gulert) = 5= [ deexplit -z~ |e41)

This is merely a multidimensional and rescaled version of the fundamental solution used in

(2.8), and a simpler, but multidimensional version of (2.8) is just:
|le|™+! DT Ga(2, t)| < Cra-

Moreover C,,q4 is arbitrarily small if ¢ is large enough (this of course requires the nonexistence
or other special behavior of lower order terms).

The matrix compression technique is easy here (for periodic problems without boundary
conditions) because the significant terms of [A”] lie near the main diagonal and its periodic
extension in one dimension. In two space dimensions (as is usual for elliptic operators), we
also need to consider diagonals ¢ = j £ kN for 0 < k < d. Recall A is an N? x N? matrix in
2D.

It is clear that & priori thresholding (to obtain O(e) precision) near the image of these
diagonals will give us an O(N4(log N)?) operation for each evaluation of the solution, where

d is the number of space dimensions for the problem.

4. Numerical Experiments

The algorithm (1.4) was applied to hyperbolic problems in one space dimensions and to

one and two dimensional parabolic problems. Various difference approximations and wavelet
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spaces were used. We present results concerning the accuracy of the calculations and the

sparsity of (SAS™!)".

4.1 Hyperbolic problems. Consider the following scalar hyperbolic problem:

O + a(z)0u = f(z)
(4.1a)
u(z,0) = up(z)

with periodic boundary conditions (0 < z < 1). We made the following choices:

(4.1b) a(z) = 0.5 + 0.115sin(472)
(4.1¢) f(z) = cos(4mz)
(4.1d) uo(z) = sin(4rz).

In the discretization, Az = 1/1024 and At/Az = 1. The wavelet transform operator
S uses the Daubechies-8 wavelets, which have 8 coefficients and have 4 vanishing moments.
Finite difference schemes of order 1,2,3,4, and 5 of accuracy are tested.

These finite difference schemes are obtained as follows. In each interval
(4.2) I,_1= {z/(v - 1)Az < z L vAz}

a polynomial of degree k is constructed. This polynomial interpolates the two points
(2,-1,u_,) and (z,,u”) and k — 1 of its neighbors. If k is even these interpolation points

go from T, & to Z,, k. If k£ is odd they go from T, (k=1)_ to 2, (k1) This gives us a

reconstruction function which is a polynomial of degree k in each JI,_1 and is continuous,

but generally not differentiable at the boundary points z,_; and z,. We call this function
R™*(z)

To approximate (4.1) at the grid points (z,,t"*!) we solve (4.1) “exactly” with initial
data

(4.3) uaz(z,t") = R™*(z)

for t" < t < t"*1 evaluate the solution at (z,,t"*!), and set up™ = uaz(z,, "), We
require M’Knﬂ, so the solution depends only on data in [,_; if a(z) > 0 and Iy+;_ if
a(z) < 0.

11



In the special case when a(z) = a, constant, then

u™*! = R™¥(z, — aAt)

(4.4)
+ ft f(z, — a(t™ = 8))ds

In the case when f = 0 we get some familiar schemes: For k = 1 this is just the first order
accurate upwind difference scheme (2.4). For k£ = 2 this is just the classical Lax-Wendroff
second order accurate three point scheme, see e.g. [7]. For k = 3,4,5 the schemes are less
studied, but are known to be L? stable, see e.g. [9] and the references therein.

For variable coefficients the result is
uaz(z,,t") = R (z,(t"))

(4.5a) 1
+ [ flat - )ds

where z,(t) solves

(4.5b) d;” =a(z,), t"<t<irt

(4.5¢) z,(t") = z,.

A fourth order Runge-Kutta method is used to integrate the O.D.E. (4.5b,c) and Simpson’s
rule is used to evaluate the integral in (4.5a). The result of this approximation to the right
side of (4.5a) is defined to be ult!.

Returning to the present case the computations ran 13 steps until £ = 4, that is,
(SAS™1)?" was computed.

At each step n the number of elements of A™ and (SAS~')" whose absolute values are
greater than 10™* is shown in table 1. This is for methods whose order of accuracies go from
one through five. The results are also plotted on Figure 1.

These significant elements are located near the sub-diagonal corresponding to the char-
acteristic curve which is known a priori. The image of these locations in (§AS~1)", shown
on figure 2, has total length of O(N log N) elements where N = 1024.

In the computation of (SAS~!)", first, from the knowledge of the PDE, we figure out the
structure of the singularities of A and its imagein (SAS~!)". Then we compute (SAS~1)?" =
(SAS~1)™ x (SAS~1)" considering only the elements in a neighborhood of the singularities.
In particular, we define the neighborhood of a singularity to be locations whose distance
from the singularity are less than or equal to 5. If the singularities lie on a subdiagonal and

its periodic extension its neighborhood form a subband of bandwidth 11 (the wavelet filters
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have 8 elements). This bandwidth is independent of the time ¢ (the step n) and the size of
the problem. The errors due to the subband truncation, measured by ||u”™ — @"||/||u"|, are
shown in table 2b. Table 2a shows the relative error between the subband truncation and
the exact solution. Here and throughout, “|| - ||” denotes the £2 norm. Table 2c shows the
relative error between the subband truncation and untruncated under grid refinement for the
various orders. Unsurprisingly, since the relative length of the subband which is preserved
decreases linearly with grid size, the error increases, but only slightly under this process.

We note that the compression (as seen in Figure 1 and Table 1) is better for odd order
than for even order schemes. This is perhaps not surprising since (2.7) models schemes of
odd order accuracy. Singularities behave a bit differently for even order (say order = 2p)
schemes. These are modeled by

5\ P+

(4.6)
2pt1 9 2p+2
Howph(aap (2)
where k, > 0 and £, are nonzero constants. The odd order dispersive term above may tend
to spread singularities of the fundamental solution spuriously.
Finally table 3 shows the relative error due to truncation when the band width of the
subband is 9, 11, and 13 for the methods of first and second order. Figures 3a and 3b

compare the truncated versus the approximate solutions due to truncation of bandwidth 9

for the first and second order methods (the truncated graphs are dotted).

4.2 Unstable Schemes. For theoretical interest, we apply the method to a finite difference

scheme which is unstable for %f; =A>0

(4.7a) U}IH = uj — Mujy —uiq)/2,

(4.7b) u) = uo(x;).
The amplification factor of this scheme is
(4.8) 1—Xi sind=r(e?), —r<6<1

50

Ir(€)] = (1 + A?sin? 6)%.
This means that if
(4.9) At < 2¢(Az)?
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for some ¢ > 0, then
(4.10) [A™|e < e,

The restriction (4.9) means that the operation count for this explicit method would be
- O(N?®) if we were silly enough to use it. However our compression method allows for an
operation count of O(N(log N)?) for the reasons described above.

Table 4 shows the number of elements in A" and (SAS~!)" whose absolute values are
greater than 1073, We choose a bigger threshold here since we took TL%T’ =1 and nAt =2,
so ||A"||, as estimated in (4.10) grows to be roughly 10 when we are finished computing.

The error as measured by U%ﬂ (subband truncation using bandwidth 11) was 0.0136.

We also performed convergence studies as we refined the grid for this method. Figures
(4a,b,c) compare the numerical (untruncated) using dots versus exact solution for m =
128,256,512 grid points. The result indicates a second order method, as it should, since At =
(Az)?. Figures (5a,b,c) compare the truncated bandwidth (using dots) vs the untruncated
for this method for m # 128,256, and 512 grid points.

The relative error decreases with mesh refinement. The truncation error equation associ-

ated with this scheme involves limited antidiffusion. Perhaps this accounts for this behavior.

4.3 System of Hyperbolic Equations. We apply the method to solving the system of

hyperbolic equations:

v a 0 v 0
a2z 2l
~on 0L z<1,t >0 with the boundary conditions and initial conditions:

v(0,t) = w(0,¢)

w(l,t) = v(1,t)
(4.11b)

v(z,0) = vo(z)

w(z,0) = wo(x)
the coeflicient a is chosen to be constant:

a = 0.115.

The numerical method used 1s the first order accurate upwind method described above.
The results are similar to the scalar case, except the structure of the singularities in the

matrices is more complicated. We have to keep track of reflections of singularities at the
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boundaries which is quite simple in this case. The number of elements in A® and (SAS™!)"
whose absolute values are greater than 10~* is shown on table 5, and is plotted on figure 6.
The relative error due to the subband of width 11 truncation, measured by ||u™ — @"||/||u"|],
is 0.0149.

The structure of the elements whose absolute values are greater than 10™* of A?%*® and
(SAS~1)?%%8 is shown in figures (7a,c), while Figure (7b) shows the image of a subband of
bandwidth 11 in (SAS~1)%04,

4.4 Parabolic Problems. We do experiments on the following parabolic problem:

Owu = Og(a(z)0zu) + f(z)
(4.12)
u(z,0) = up(x)

with periodic boundary conditions (0 < z < 1). We made the following choices:
a(z) =0.540.25sin(27rx)
f(z) = —n?cos(2rz)? + 72(0.5 + 0.25 sin(27z)) sin(2rz)
uo(z) = sin(4rz).

The discrete setting and the wavelets are the same as in the hyperbolic problem. We use

the simple explicit central difference scheme (4.13)

n n At
( ) uj+1 = U] + -('—A—;)—zA_(a(lfJ)A+UJ)
4.13
+ Atf(z;)
where

Azu;j = Flujzr — uj)
with At/(Az)? = 0.25. The number of significant elements in A® and (SAS~!)" is shown on
table 6, and is plotted on figure 8.
For the parabolic problem, the large elements of A are in the neighborhood of the main
diagonal. Their wavelet transform image is shown in figure 9. The relative error due to

subband truncation was 0.0025.

4.5 Two-dimensional Parabolic Problems. We consider the following problem:
Oiu = a110:2u + 2a120;yu + 220,
u(z,y,0) = uo(z,y)
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with periodic boundary conditions (0 < z <1, 0 <y < 1). We choose
aii(z,y) = 0.5+ 0.25sin(27zx)
aiz(z,y) = 0.115sin(27z) cos(2ry)
axn(z,y) = 0.5+ 0.25cos(27y)
uo(z,y) = sin(4rz)+ cos(87zx).

We use a standard two-dimensional explicit central difference scheme. The two-dimensional

data u;x, j=1...Ny, k=1... N, forms a one-dimensional vector in the following way

{ul,l <o UL Ny, U2 - U Nps oo oy UNY T - .UN“NQ}.

To reduce the size of the problem, N, is much less than N;. In particular we took N; =
128, N, =8 that is, Az = 1—;-5 Ay =1

The compression worked quite well. Table 7 shows the number of elements in A" on
(SAS~1)" whose absolute values are greater than 10~*. The relative error due to subband

truncation was 0.0066.
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 order ! order 2 order 3
n] A [GASTT | A [BAS T | A [BAST
1 2048 25438 2048 25132 || 2048 25688
2 3072 26560 4096 271271 | 8120 27359
4 5120 25935 6680 27704 | 5868 27553
8 9216 24609 9464 26701 || 9192 26975
16 | 14886 22260 || 14282 26531 {10122 26705
32| 21376 20167 || 18812 27349 || 11796 26481
64 || 29728 15487 || 24848 28588 || 13732 26543
128 || 41190 11223 | 32814 2938) || 16466 25766
256 || 56652 7449 || 43160 20037 | 19542 24104
512 | 78582 5129 ]| 57647 27721 | 23662 21091
1024 || 113950 3391 81808 26117 §i 30200 17900
048 || 155610 ] 2347 || 107300 | 24034 | 35512 | 15193
4096 | 211302 1555 || 140756 21998 |l 41958 12942
8192 || 284234 1079 |[ 184325 20507 || 48752 10558
order 4 order 5

T A TEAST | A [(SASTF

1 3072 25594 4096 26008

2 6144 27893 7168 28029

4 7690 2765 8138 26913

8|l 10368 27713 || 10018 27881

16 || 12980 28635 || 11424 27909

32 | 16032 20185 || 13198 28171

64 19376 30313 15172 28347

126 || 23614 31886 {{ 17350 28538

256 || 28834 33780 || 19566 28273

512 || 36074 35812 | 22458 28070
1024 || 47716 36690 || 26496 26754
2048 57358 | 37893 30118 25454
4096 | 68842 - 37770 [ 33410 23931
B192 || B1708 37205 || 36625 22147

Table 1: Ryperbolic equation: the number of elements in A® and (SAS-1)»
whose absolute values are greater than 10-4

Table 2: Byperbolic equation: the errors, measured by [ju® — &*]/|lu” ||, (a) compare with
the eact solution; (b) due to the truncation only; (¢) due to the truncation caly under grid

refinement.

order 1 | order 2 { order 3

order 4

orderrs

erTor

0.1622 | 0.0106 | 0.0065

0.0J09

0.0102

)

order ) | order 2 | order 3

order 4

order

error

0.0035 | 0.0105 | 0.0065

0.0J08

0.0102

b)

m

order 1 | order 2 { order 3

order 4

order 5

1024

0.0035 { 0.0105| 0.0065

0.0109

0.0102

512

0.0025 | 0.0072 | 0.0055

0.0069

0.0064

256

0.0016 | 0.0045 | 0.0042

0.0059

0.0048

128

0.0006 | 0.0036 | 0.00}9

0.0030

0.0026

(¢)
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width error for order 1 error for order 2

9 0.0227 0.0301
11 0.0035 0.0105
13 0.0028 0.0069

Table 3: Errors measured by I-!;u;.f'ﬁ-—” due to truncation for various bandwidths and first
and second order.

D A~ [ (SAS- )

1 512 512

2 750 512

4 1024 1336

8 1024 1764

16 1024 2328
32 1024 3060
64 1024 4028
128 2048 5273
256 2045 6302
512 2560 7447
1024 3432 8360
2045 4566 9308
4096 6330 9266

8192 9362 10557
16354 | 14332 13346
32766 | 23872 19255
65536 | 41490 29649

131072 | 4750 48593
262144 | 132916 84585
324268 | 132454 106197
1048576 | 132304 110240
2097152 [ 130164 115276

Teble 4: Hyperbolic equation “unstable scheme™: the pumber of elements in A™ and
(5AS577)" whose absolute values are greater than 10™?

D A [ (SAS-)
1] 2048 19351
2( 3074 22589
6| $126 25327
8] 6154 26440
16 | 9228 5804
32 | 13332 5747
64 | 19488 2384

128 | 27692 18985
256 | 31948 14064
$12 | 52308 10116
102¢ | 72614 8110
2045 | 98456 8685

Table 5 System of hyperbolic equations: The pumber of elements in A" and (SAS™?)"
whose absalute values are greater than 1074
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11682 193286
16214 18775
321 21900 17622
64 | 30126 14389
128 | 41434 10387

n A [ (SAS-1)»
1 3072 15194
2 5120 17342
4 8462 19136
3
16

256 | 56756 7392
512 | 78078 5073
1024 | 106976 3554
2048 | 146466 2396
4090 | 199878 1658
6192 | 272050 1082

Table §: Parabolic equation: the pumber of elements in A® and (SAS™!)" whose absolute
values are greater than 10™4 ’

A" [ (SAS-)»
6632 34190
16612 52941
40210 72420
72360 87381
16 | 105802 84827
32| 146292 67912
64 | 195480 46850
128 | 2688€2 31925
256 | 365156 21497
512 | 491936 13653

0o v | tOf e

1024 | 658800 8703
2045 | 891144 5271
4090 | 1048576 3373
§192 | 1048576 1981

Table 7: 2D-parabolic equation: the number of elements in A" and (SAS~3)" whose
sbsolute values are greater than 1074
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Figure 1: Hyperbolic equation: the pumber of elements in A™ and (SA5™?)" = w* whose
absolute values are greater than 1074
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Figure 32 Truncation versus pontruncated approximate solution, first order method trun-

cated at bandwidth § (Truncated is dotted).

order 2, width 9
15 T - —

200 400 600 800 1000 1200

Figure 3b: Truncated versus nontruncated approximate solution, second order method,
truncated st bandwidth 9. (Truncated is dotted).
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Figure 4c: Exact vs approximate solution “unstable scheme™, m = 512
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Figure 5¢: Truncated bandwidth 11 vs untruncated for the “unstable scheme”™, m = 512
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Figure 8: Parabolic equation: the pumber of elements in A™ and (SAS~!)* whose absolute
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